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Dear editor,
After decades of development, system model-
ing and control theory have developed thor-
oughly. Various identification, estimation and con-
trol methods have been given [1]. However, most of
these results are based on accurate measurements
of the system inputs and outputs. But now, quan-
tized data are more and more popular, and how to
use quantized data to model and control the sys-
tems is of great importance and involved in many
challenging problems. Ref. [2] studied the quan-
tized partial-state feedback stabilization of a class
of nonlinear cascaded systems and gave a recursive
design method for quantized stabilization. Ref. [3]
used quantized data to design feedback stabiliza-
tion control. Ref. [4] studied the parameter iden-
tification of set value systems. Ref. [5] considered
the adaptive control of first-order systems. Ref. [6]
solved the adaptive tracking control of linear sys-
tems with binary-valued observations and periodic
target.

Unlike precise measurements, when using quan-
tized data we have to consider the effects of quan-
tization error, which cannot be simply assumed as
zero mean white noise and is different from white
noises, since quantization error depends on both
system inputs and system noises.

This study consists of two parts. In the first
part, we use the quantized output to design a
tracking control and establish the relationship be-
tween the tracking error and the quantization er-

ror for a class of ARMAX systems with corre-
lated noises. In the second part, we give a pa-
rameter identification method for a class of linear
time-invariant systems with quantized outputs but
without system noises, and study the influence of
the quantization error on the parameter estimation
error. Compared with [3–6], the model is much
more general. For instance, the system here is not
assumed to be of first-order or open-loop stable,
and is allowed to be with autoregressive terms.

Tracking control of quantized ARMAX systems.
Consider the following ARMAX systems:

A(z)y(k) = B(z)u(k− d)+C(z)w(k), d > 1, (1)

where y(k), u(k) and w(k) are the m-, l- and m-
dimensional output, input and noise, and

A(z) = I +A1z + · · ·+Apz
p, (2)

B(z) = B1 +B2z + · · ·+Bqz
q−1, (3)

C(z) = I + C1z + · · ·+ Crz
r (4)

are known and with the shift-back operator z.
The orders p, q, r and the time-delay d are as-

sumed known.
For simplicity, we suppose y(k) = u(k) =

ω(k) = 0, for any k < 0.
The task here is to design tracking control only

using inputs and quantized outputs.
For a given constant ε > 0 and any k = 1, 2, . . .,

the quantizer we use here is of the following uni-
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form one:
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where yi(k) is the ith component of output y(k),
for i = 1, 2, . . ., m.

s(k) = [s1(k), . . . , sm(k)]T. (6)

Lemma 1 ([7]). The Diophantine equation

det(C(z))I = F (z)adj(C(z))A(z) + zdG(z) (7)

has the unique solution F (z) and G(z), where
F (z) = F0 + F1z + · · ·+ Fd−1z

d−1 with F0 = I.

Assumption 1. B(z) and C(z) are stable, i.e.,
det(B(z)) 6= 0 and det(C(z)) 6= 0, for any |z| 6 1,
B1 is non-degenerate.

Assumption 2. y∗(k) is the tracking signal and
satisfies lim supt→∞

1
t

∑t
k=0 ||y

∗(k)||2 < ∞.

Assumption 3. {w(k),Fk} is a martingale dif-
ference sequence (Fk is non-descending subalge-
bra) and supkE[||wk+1||

2|Fk] < γ < ∞, almost

sure, limk→∞
1
k

∑k

i=0 ||w(i)||
2 = R > 0.

Denote F (z)adj(C(z))B(z) = D0 +D1z + · · ·+
Dp1

zp1 . Then, D0 = B1 is non-degenerate.
From [7] and (5), the tracking control can be

intuitively chosen to satisfy

F (z)adj(C(z))B(z)u(k)

= det(C(z))y∗(k + d)−G(z)s(k), (8)

or equivalently,

u(k) =D−1
0 (det(C(z))y∗(k + d)

−G(z)s(k)−

p1
∑

i=1

Diu(k − i)).

Theorem 1. For the system (1), if Assump-
tions 1 and 3 are satisfied, then

lim sup
n→∞

1

n

n
∑

k=0

||y(k)− y∗(k)||2

= tr

d−1
∑

j=0

FjRFT
j +O(ε). (9)

Proof. See Appendix A.

Theorem 2. For the system (1), with the control
(8), if Assumptions 1–3 are satisfied, the closed-
loop system is stable in the sense that

lim sup
n→∞

1

n

n
∑

k=0

(||y(k)||2 + ||u(k)||2) < ∞. (10)

Proof. See Appendix B.

Remark 1. Here we consider only the uniform
quantizers. In this case, no matter what the sys-
tem inputs and outputs are and whether or not the
system involved is stable, the quantization error is
always uniformly bounded, which makes the sta-
bilization and analysis of the closes-loop systems
easier. However, when other type of quantizers,
for instance, logarithmic quantizers [8], are used,
the quantization error may be unbounded, which
makes the control synthesis much more difficult.

Parameter identification of quantized DARMA

systems. Consider the following DARMA systems:

A(z)y(k) = zdB(z)u(k), d > 1, (11)

where y(k), u(k) are them-, l- dimensional output,
input. A(z) and B(z) are of the form of (2) and
(3), but with unknown coefficient matrices. The
orders p and q and the time-delay d are assumed
known, z is the shift-back operator.

The purpose of the following part is to estimate
the unknown coefficient matrices of A(z) andB(z).
To do so, we need the following assumptions.

Assumption 4. A(z) and B(z) are left-coprime
and Ap is of full rank.

Assumption 5. There are constants V > 0 and
δ > 0 such that ||u(i)|| 6 V and

k+h
∑

i=k+1

UiU
′
i > δI, k > 0,

where h > (mp+ q)l, and

Ui =
[

uT(i), . . . , uT(i −mp− q + 1)
]T

. (12)

Lemma 2 ([9]). Let

Hx(z) =xT
1 adj(A(z))B(z)zd + · · ·

+ xT
p adj(A(z))B(z)zp+d−1

+ xT
p+1z

d−1det(A(z)) + · · ·

+ xT
p+qz

q+d−2det(A(z))

=

mp+q−1
∑

i=0

gTi (x)z
i+d−1,

where x ∈ R
mp+lq is in the vector-component form

x = [xT
1 , x

T
2 , . . . , x

T
p+q]

T with xi ∈ R
m, xj ∈ R

l,
1 6 i 6 p, p+1 6 j 6 p+ q. If Assumptions 4 and
5 are satisfied, then min||x||=1 ||g(x)||

2 > 0, where
g(x) = [gT0 (x), g

T
1 (x), . . . , g

T
mp+q−1(x)]

T.
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Lemma 3. Let H ′
x(z) =

∑p
i=1 x

T
i adj(A(z))z

i−1.
If Assumptions 4 and 5 are satisfied, there exists a
constant c0 > 0 such that |Hx(z)u(i)H

′
x(z)ǫ(i)| 6

c0
3 ε, for any x ∈ R

mp+lq, ||x|| = 1.
Proof. See Appendix C.

Let θ = [−A1, . . . ,−Ap, B1, . . . , Bq]
T. We now

estimate the unknown parameter θ by the follow-
ing projection algorithm [9]:

θn+1 = θn +
ϕn

1 + ||ϕn||2
(sT(n+ 1)− ϕT

nθn), (13)

ϕT
n =[sT(n), . . . , sT(n− p+ 1),

uT(n− d+ 1), . . . , uT(n− q − d+ 2)]

with arbitrary initial values θ0 and ϕ0.
Set


















θ̃n = θ − θn,

Ψ(n+ 1, i) =

(

I −
ϕnϕ

T
n

1 + ||ϕn||2

)

Ψ(n, i),

Ψ(i, i) = I.

(14)

Lemma 4. Suppose Assumption 4 holds and As-
sumption 5 is satisfied for δ = hc0ε

min||x||=1 ||g(x)||2 .

Then, there is a constant c > 0 such that

λmin

(

k+mp+h
∑

i=k+1

ϕiϕ
T
i

)

>
c

h
λmin





k+mp+h−d+1
∑

i=k+mp−d+2

UiU
T
i



 , (15)

for any k > 0, where λmin(X) is the minimum
eigenvalue of matrix X and Ui is defined by (12).
Proof. See Appendix D.

Lemma 5. See Appendix E.
For i = 0, 1, 2, . . ., let τi = i(h + mp) + 1 and

Mi = supτi−16j6τi−1 ||ϕj ||
2 + 1. Then, we have

the following lemma.

Lemma 6. Suppose the conditions of Lemma 4
hold. Then, there are constants c1 > 0 and c2 > 0

such that ||Ψ(τn, 0)|| 6 exp(−c1
∑n

i=1
δ2

M2

i

), and

||Ψ(τn, τn−1)|| 6 exp(−c2
δ2

M2
n

).

Proof. See Appendix F.

Theorem 3. Suppose the conditions of Lemma 4
hold and there is a constant v ∈ [0, 14 ) such that

||ϕn|| = O (nv) , ∀n, (16)

then, we have ||θ̃n|| = O (ε) .
Proof. See Appendix G.

Remark 2. Because ε > 0 can be chosen arbi-
trarily small, so are the δ in Lemmas 4 and 6, and
Theorem 3. Thus, Assumption 5 can be realized
by properly choosing the input u(i) and ε.

Conclusion. In this study, we have studied
the tracking control and parameter identification
of linear time-invariant discrete-time system with
quantized outputs. By using quantized output
data from a uniform quantizer, we designed the
tracking control law and shown the stability of
the closed-loop system and the suboptimality of
the tracking error. As for parameter identifica-
tion, we proved the boundness of parameter esti-
mation error by using the projection algorithm. In
addition, numerical simulations have been given
in Appendix H. But for other type of quantizers
or nonlinear systems, parameter identification and
tracking control based on quantized output data
have not been solved and need further study.
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Appendix A Proof of Theorem 1

By (1) and (7) we have

det (C(z)) (y(k)− F (z)w(k))

= F (z)adj (C(z))A(z)y(k) +G(z)y(k − d)− det (C(z))F (z)w(k)

= F (z)adj (C(z))B(z)u(k − d) + F (z)det (C(z))w(k) +G(z)y(k − d)− det (C(z))F (z)w(k)

= G(z)y(k − d) + F (z)adj (C(z))B(z)u(k − d),

which together with (8) leads to

det (C(z)) (y(k)− F (z)w(k)) = G(z)y(k − d) + det (C(z)) y∗(k)−G(z)s(k − d),

det (C(z)) (y(k)− y∗(k)) = G(z)(y(k − d)− s(k − d)) + det (C(z))F (z)w(k).

Thus, by Assumptions 1 and 3 and (6) we have

lim sup
n→∞

1

n

n∑
k=0

||y(k)− y∗(k)||2 = tr

d−1∑
j=0

FjRF
T
j +O(ε).

Appendix B Proof of Theorem 2

From (1) it is easy to see

B(z)u(k − d) = A(z)y(k)− C(z)w(k).

Notice that

1

n

n∑
k=0

||y(k)||2 =
1

n

n∑
k=0

||y(k)− y∗(k) + y∗(k)||2 6
2

n

n∑
k=0

||y(k)− y∗(k)||2 +
2

n

n∑
k=0

||y∗(k)||2. (B1)

Then, by Assumption 1, there is a constant C′ > 0 such that

1

n

n∑
k=0

||u(k)||2 6
C′

n

n+d∑
k=0

(
||y(k)||2 + ||w(k)||2

)
.

This together with Assumptions 2 and 3, Theorem 1 and (B1) implies (10).

* Corresponding author (email: jif@iss.ac.cn)
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Appendix C Proof of Lemma 3

By (5), (11) can be rewritten as

A(z)s(k) = zdB(z)u(k) + ε(k), k > 0,

where ε(k) = A(z)(s(k)− y(k)).

By (5), one can get

||ε(k)|| 6Mε, (C1)

with M = m
2

∑p
i=0 ||Ai||.

By Assumption 5, u(i) is bounded. So, there exists a constant c0 independent of ε such that

|Hx(z)u(i)H′x(z)ε(i)| 6
c0

3
ε, x ∈ Rmp+lq , ||x|| = 1.

Appendix D Proof of Lemma 4

Let

det(A(z)) = a0 + a1z + · · ·+ ampz
mp, amp 6= 0,

and

ψn = det (A(z))ϕn. (D1)

Then

ψn = [adj (A(z)) (zdB(z)u(n) + ε(n))T , · · · ,

adj (A(z)) (zp+d−1B(z)u(n) + ε(n− p+ 1))T ,

zd−1det (A(z))uT (n), · · · , zd+q−2det (A(z))uT (n)]T . (D2)

From (D1) we can obtain that for any x ∈ Rmp+lq ,

x′

 k+mp+h∑
i=k+mp+1

ψiψ
′
i

x =

k+mp+h∑
i=k+mp+1

(
x′ψi

)2
=

k+mp+h∑
i=k+mp+1

mp∑
j=0

ajx
′ϕi−j

2

6
mp∑
j=0

a2j

k+mp+h∑
i=k+mp+1

mp∑
j=0

(
x′ϕi−j

)2
6 h

mp∑
j=0

a2j

k+mp+h∑
i=k+1

x′ϕiϕ
′
ix,

which implies

λmin

k+mp+h∑
i=k+1

ϕiϕ
′
i

 >
1

h
∑mp
j=0 a

2
j

λmin

 k+mp+h∑
i=k+mp+1

ψiψ
′
i

 .

Hence, in order to prove (15) we only need to show that

λmin

 k+mp+h∑
i=k+mp+1

ψiψ
′
i

 > c1λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

 , c1 > 0.

Write the unit vector x ∈ Rmp+lq in the vector-component form x =
[
xT1 , x

T
2 , · · · , xTp+q

]T
. Then, by (D2), Assumption

5 and δ = hc0ε
min||x||=1 ||g(x)||2

we have

x′
k+mp+h∑
i=k+mp+1

ψiψ
′
ix =

k+mp+h∑
i=k+mp+1

(
Hx(z)u(i) +H′x(z)ε(i)

)2
=g′(x)

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
ig(x) + 2

k+mp+h∑
i=k+mp+1

Hx(z)u(i)H′x(z)ε(i) +

k+mp+h∑
i=k+mp+1

(
H′x(z)ε(i)

)2
> min
||x||=1

||g(x)||2λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

+ 2

k+mp+h∑
i=k+mp+1

Hx(z)u(i)H′x(z)ε(i)

> min
||x||=1

||g(x)||2λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

− 2h

3
c0ε

= min
||x||=1

||g(x)||2
λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

− 2δ

3


>

1

3
min
||x||=1

||g(x)||2λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

 .

This together with Lemma 2 gives (15).
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Appendix E Lemma 5

If
N−1∑
i=k

ϕiϕ
′
i

1 + ||ϕi||2
> αI,

for some α > 0, then we have

||Ψ(N, k)|| 6
[
1−

α2

4(N − k)3

]1/2
.

Proof. See [1].

Appendix F Proof of Lemma 6

For the first inequality of Lemma 6

||Ψ(τn, 0)|| 6 exp

(
−c1

n∑
i=1

δ2

M2
i

)
,

please see [1].

Here we need only to show the second inequality of Lemma 6. By Lemma 4 and Assumption 5

τn−1∑
i=τn−1

ϕiϕ
′
i

1 + ||ϕi||2
>

cδ

Mnh
I.

This together with Lemma 5 and the elementary inequality 1− x 6 e−x, ∀x ∈ [0, 1] leads to

||Ψ(τn, τn−1)|| 6
(

1− c′2
δ2

M2
n

) 1
2

,

where c′2 > 0 is a constant.

Let c2 = 1
2
c′2. Then, we can get Lemma 6.

Appendix G Proof of Theorem 3

By (14) we have

θ̃n+1 =θ − θn+1

=θ − θn −
ϕn

1 + ||ϕn||2
(
sn+1 − ϕ′nθn

)
=θ̃n −

ϕn

1 + ||ϕn||2
(
ϕ′nθ̃n + ε(n+ 1)

)
=

(
I −

ϕnϕ′n
1 + ||ϕn||2

)
θ̃n −

ϕn

1 + ||ϕn||2
ε(n+ 1)

= · · ·

=Ψ(n+ 1, 0)θ̃0 −
ϕn

1 + ||ϕn||2
ε(n+ 1)− · · ·

−Ψ(n+ 1, 2)
ϕ1

1 + ||ϕ1||2
ε(2)−Ψ(n+ 1, 1)

ϕ0

1 + ||ϕ0||2
ε(1),

and hence,

||θ̃n|| 6||Ψ(n, 0)||||θ̃0||+ ||ε(n)||+ ||Ψ(n, n− 1)||||ε(n− 1)||
+ · · ·+ ||Ψ(n, 1)||||ε(1)||. (G1)

Noticing

τn = n(h+mp) + 1,

by (16) we get ||ϕτn || = O(τvn). This together with the definition of Mi results in

M2
i = O

(
τ4vi
)

= O
(
i4v
)
.

So, from (16) and Lemma 6 there exists c3 > 0 such that

||Ψ(τn, 0)|| 6 exp

(
−c3

n∑
i=1

1

i4v

)
= O

(
exp

(
−c4(n+ 1)1−4v

))
, (G2)

where c4 = c3
1−4v

> 0.

For any n, there exists kn such that

τkn 6 n 6 τkn+1,

or

kn(h+mp) + 1 6 n 6 (kn + 1)(h+mp) + 1.
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So,

kn + 1 >
n− 1

h+mp
.

By (G2) we have

||Ψ(n, 0)|| 6 ||Ψ(τkn , 0)|| = O
(
exp

(
−c5(kn + 1)1−4v

))
= O

(
exp

(
−αn1−4v

))
, (G3)

where c5 > 0, α > 0.

For Ψ(n, k), by Lemma 5, we have

||Ψ(τn, τn−1)|| 6
(

1− c′2
δ2

M2
n

)1/2

.

For any 1 6 k 6 n, by the definition of τn, there exists m such that τm > k. So,

||Ψ(τn, k)|| 6 ||
n∏

i=m+1

Ψ(τi, τi−1)|| 6

 n∏
i=m+1

(
1− c′2

δ2

M2
i

)1/2

.

From (16) and Lemma 6 there exists c6 > 0 such that

||Ψ(τn, k)|| 6 exp

−c6 n∑
i=m+1

1

i4v


= O

(
exp

(
−c7(n+ 1)1−4v

))
, (G4)

where c7 > 0.

Hence, by (G2) and (G4) we can get

||Ψ(n, k)|| 6 ||Ψ(τkn , k)|| = O
(
exp

(
−c8(kn + 1)1−4v

))
= O

(
exp

(
−βn1−4v

))
, (G5)

where c8 > 0, β > 0.

Therefore,

lim
n→∞

||Ψ(n, 1)||+ · · ·+ ||Ψ(n, n)|| = O (1) ,

which together with (C1), (G1), (G3) and (G5), implies

||θ̃n|| = O (ε) , as n→∞.

Appendix H Simulation

Example 1. Tracking control with quantiezd outputs

Consider a system

A(z)y(k) = B(z)u(k − 1) + C(z)w(k), k = 1, 2, ...

with

A(z) =

[
1 + 1

2
z 0

0 1 + 1
3
z

]
, B(z) =

[
1 1

1 0

]
, C(z) =

[
1 + 1

2
z 1

2
z

1
3
z 1 + 1

3
z

]
,

w(k) being a 2-dimensional standard normal noise, the output y(k) measured by (5) with ε = 0.3, and y∗(k) = [1, 1]T .

Then, under the tracking control (8), the tracking error is shown in H1.
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Figure H1 Trajectory of 1
n

∑n
k=1 ||y1(k)− y∗1(k)||2 and 1

n

∑n
k=1 ||y1(k)− y∗1(k)||2



Lida Jing, et al. Sci China Inf Sci 5

Example 2. Parameter identification with quantiezd outputs

Consider a system

y(k) = ay(k − 1) + bu(k − 1), k = 1, 2, ...

with θ = [a, b]T = [−1, 1]T to be identified. The output y(k) is measured by (5) with ε = 0.01. The projection algorithm

(13) is used with initial θ0 = [0, 0]T and the control u(k)=-3, -1, 1, -3, -1, 1, -3 ... , k=1, 2, ... , and the ||θ̃n|| is shown in

H2.

0 10 20 30 40 50 60 70 80 90 100

n

0

0.5

1

1.5

Figure H2 Trajectory of ||θ̃n||
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